Теормин от Дмитрия (2024-25)

Как пользоваться этим файлом?

В данном файле собран теормин по предмету "Математическая логика и логическое программирование", который на 3-м потоке читал Владислав Васильевич Подымов в 7-м семестре в 2024-25 учебном году.

Данный файл распространяется в формате pdf, а его исходник в формате Markdown. Автор данного файла <u>настоятельно рекомендует</u> читать Markdown-исходник в Obsidian (бесплатный кроссплатформенный редактор Markdown файлов). При других способах открытия, увы, возможны разные неприятные графические баги. Экспорт в pdf тоже рекомендуется делать через Obsidian.

Далее собран теормин по курсу, который писался со слайдов лектора. Перед каждым термином/теоремой в скобках указан номер слайда в сконкатенированном pdf файле со всеми лекциями.

Удачи с подготовкой! Тг автора теормина - @dmirtyast

Теормин

- 1. (46) Логика предикатов. Алфавит
 - 1. Const множество всех констант
 - 2. Var множество всех переменных
 - 3. Func множество всех функциональных символов с сопоставленными им местностями
 - 4. Pred множество всех предикатных символов с сопоставленными им местностями
 - 5. Сигнатурой алфавита логики предикатов называется тройка $\langle \mathrm{Const}, \mathrm{Func}, \mathrm{Pred} \rangle$
- 2. (50) Логика предикатов. Синтаксис. Термы

```
Терм - это t := x \mid c \mid f^{(n)}(t_1, t_2, \dots, t_n).
```

Term - множество всех термов (над заданными множествами Var, Const, Func)

 Var_t - множество всех переменных, входящих в терм t.

Терм t основной если $\mathrm{Var}_t = \emptyset$.

3. (52) Логика предикатов. Синтаксис. Формулы Формула - это $\varphi := P^{(k)}(t_1,t_2,\ldots,t_k) \mid (\varphi \& \varphi) \mid (\varphi \lor \varphi) \mid (\varphi \to \varphi) \mid (\neg \varphi) \mid (\forall x \varphi) \mid (\exists x \varphi).$ Формула атомарна, если имеет вид $P(t_1,t_2,\ldots,t_k)$, где $P^{(k)} \in \operatorname{Pred}$ и $t_1,t_2,\ldots,t_k \in \operatorname{Term}$. Остальные формулы называются составными.

Form - множество всех формул в алфавите с заданной сигнатурой.

4. (108) Формула $\varphi(\tilde{x}^n)$ выполнима в интерпретации \mathcal{I} , если существует набор предметов \tilde{d}^n из области интерпретации \mathcal{I} , такой что $\mathcal{I} \models \varphi(\tilde{x}^n)[\tilde{d}^n]$. Формула φ выполнима ($\models \varphi$), если

существует интерпретация, в которой она выполнима.

- 5. (111) Интерпретация \mathcal{I} является моделью для предложения φ если $\mathcal{I} \models \varphi$.
- 6. (113) Предложение φ называется логическим следствием множества предложений Γ ($\Gamma \models \varphi$), если любая модель Γ является моделью φ . Другими словами, если для любой интерпретации \mathcal{I} верно $\mathcal{I} \models \Gamma \implies \mathcal{I} \models \varphi$.
- 7. (118) Теорема о логическом следствии Для любого предложения φ и любого конечного множества предложений $\Gamma=\{\psi_1,\dots,\psi_n\}$ справедливо

$$\Gamma \models \varphi \Leftrightarrow \models \psi_1 \& \psi_2 \& \dots \& \psi_n \rightarrow \varphi$$

8. (125) Существует необщезначимое предложение, истинное в любой интерпретации с конечной предметной областью.

$$orall x
eg R(x,x) \& orall x orall y
eg Z(R(x,y) \& R(y,z)
ightarrow R(x,z))
ightarrow \exists x orall y
eg R(x,y)$$

Другими словами если отношение R антирефлексивно и транзитивно, то существует предмет, максимальный относительно R. (Следствие леммы Цорна)

- 9. (132) Семантическая таблица $T = \langle \Gamma | \Delta \rangle$ закрыта, если $\Gamma \cap \Delta \neq \emptyset$.
- 10. (132) Семантическая таблица $T=\langle \Gamma | \Delta \rangle$ атомарна, если все формулы из $\Gamma \cup \Delta$ атомарны.
- 11. (133) Семантическая таблица $T=\langle \Gamma|\Delta\rangle$ выполнима, если существуют интерпретация $\mathcal I$ и набор предметов $\tilde d^n$, такие что $\forall \varphi\in\Gamma\ \mathcal I\models\varphi(\tilde x^n)[\tilde d^n]$ и $\forall \psi\in\Delta\ \mathcal I\nvDash\psi(\tilde x^n)[\tilde d^n]$. (Прим.: т.е. в семантической таблице нет противоречий)
- 12. (135) Теорема о табличной проверке общезначимости. Для любой формулы φ справедливо $\models \varphi$ тогда и только тогда, когда таблица $\langle | \varphi \rangle$ невыполнима.
- 13. (135) Любая закрытая таблица невыполнима.
- 14. (135) Любая незакрытая атомарная таблица выполнима.
- 15. (143) Утверждение о правильной подстановке. Для любой формулы $\varphi(\tilde{x^n},x)$, интерпретации \mathcal{I} , набора предметов $\tilde{d^n}$ и подстановки $\{x/t(\tilde{x^n})\}$, правильной для φ , верно:

$$\mathcal{I} \models arphi[ilde{d^n}, t[ilde{d^n}]] \Leftrightarrow \mathcal{I} \models arphi\{x/t\}[ilde{d^n}]$$

- 16. (154) Табличный вывод успешен, если он конечен и всем его листьям приписаны закрытые таблицы.
- 17. (161) Лемма о корректности правил табличного вывода. Для любого правила табличного вывода $\frac{T_0}{T_1(T_2)}$ таблица T_0 выполнима тогда и только тогда, когда выполнима таблица T_1 (или выполнима таблица T_2).
- 18. (166) Теорема о корректности табличного вывода. Если для семантической таблицы T существует успешный табличный вывод, то таблица T невыполнима.
- 19. (169) Теорема о полноте табличного вывода. Для любой невыполнимой семантической таблицы существует успешный табличный вывод.
- 20. (180) Следствие 1. Семантическая таблица T логики предикатов невыполнима \Leftrightarrow для неё существует успешный табличный вывод. (Прим.: это следствие из теорем о корректности и полноте табличного вывода)

- 21. (180) Следствие 2. Для любой формулы φ логики предикатов верно: $\models \varphi \Leftrightarrow$ для семантической таблицы $\langle | \varphi \rangle$ существует успешный табличный вывод. (Прим.: это следствие из первого следствия и теоремы о табличной проверке общезначимости формул)
- 22. (184) Теорема Лёвенгейма-Сколема. Для любого предложения φ справедлива равносильность: φ выполнимо $\Leftrightarrow \varphi$ имеет модель с <u>не более чем счётной</u> предметной областью.
- 23. (186) Теорема компактности Мальцева. Для любого предложения φ и любого множества предложений Γ справедлива равносильность: $\Gamma \models \varphi \Leftrightarrow$ существует конечное подмножество Γ' множества Γ , такое что $\Gamma' \models \varphi$.
- 24. (187) Множество предложений Γ называется выполнимым ($\models \Gamma$), если у этого множества есть хотя бы одна модель.
- 25. (187) Следствие из теоремы о компактности Мальцева. Для любого множества предложений Γ верно: $\not\models \Gamma \Leftrightarrow$ существует конечное подмножество Γ' множества Γ , такое что $\not\models \Gamma'$.
- 26. (201) Метод резолюции.
 - 1. Исходная формула (φ)
 - 2. Отрицание ($\psi = \neg \varphi$)
 - 3. ПНФ (ψ_{pnf})
 - 4. ССФ (ψ_{ssf})
 - 5. Система дизъюнктов ($S_{\psi_{ssf}}$)
 - 6. Резолютивный вывод пустого дизъюнкта из $S_{\psi_{ssf}}$
- 27. (204) Эквивалентность $\varphi \leftrightarrow \psi$ это сокращение для формулы $(\varphi \to \psi) \& (\psi \to \varphi)$
- 28. (204) Формулы φ и ψ равносильны, если формула $\varphi \leftrightarrow \psi$ общезначима.
- 29. (205) Утверждение. Если формула φ общезначима (выполнима), то любая равносильная ей формула ψ также общезначима (выполнима)
- 30. (208) Теорема о равносильной замене. Для любых формул φ, ϕ, χ логики предикатов верно: $\psi \sim \chi \implies \varphi[[\psi]] \sim \varphi[[\psi/\chi]]$. Прим.: $\varphi[[\psi]]$ обозначение, что формула φ содержит подформулу ψ , а $\varphi[[\psi/\chi]]$ замена в формуле φ подформулы ψ на χ .
- 31. (217-221) Перевод в ПНФ (предваренную нормальную форму).
 - 1. Переименование переменных
 - 2. Удаление импликаций
 - 3. Продвижение отрицаний
 - 4. Вынесение кванторов
 - 5. Получение КНФ
- 32. (227) Лемма об удалении квантора существования. Пусть $\varphi = \forall \tilde{x}^n \exists x_{n+1} \chi$ замкнутая формула ЛП (логики предикатов) и функциональный символ f не содержится в χ . Тогда $\models \varphi \Leftrightarrow \models \forall \tilde{x}^n (\chi \{x_{n+1}/f(\tilde{x}^n)\}).$
- 33. (239) Теорема о переходе к дизъюнктам. Для ССФ с любым набором множителей D_1, \ldots, D_k верно: $\models \forall \tilde{x}^n (D_1 \& \ldots \& D_k) \Leftrightarrow \models \{ \forall \tilde{x}^n D_1, \ldots, \forall \tilde{x}^n D_k \}.$

- 34. (250) Подстановка θ называется унификатором выражений E_1, E_2 , если $E_1\theta = E_2\theta$.
- 35. (250) $Y(E_1, E_2)$ (в лекциях $Y(E_1, E_2)$) множество всех унификаторов E_1, E_2 . Выражения E_1, E_2 унифицируемы, если $Y(E_1, E_2) \neq \emptyset$.
- 36. (250) Утверждение. Для любых подстановок θ, η и любых выражений E_1, E_2 верно: если $\theta \in Y(E_1, E_2)$, то $\theta \eta \in Y(E_1, E_2)$.
- 37. (250) Подмножество S множества подстановок Θ называется полным в Θ , если для любой подстановки $\theta \in \Theta$ существуют $\eta \in S$ и $\mu \in \mathrm{Subst}$, такие что $\theta = \eta \mu$, где Subst множество всех конечных подстановок.
- 38. (250) Подстановка θ называется наиболее общим унификатором выражений, если множество $\{\theta\}$ является полным в $Y(E_1,E_2)$. НОУ (E_1,E_2) множество наиболее общих унификаторов E_1,E_2 .
- 39. (272) Теорема об унификации. Для любой системы уравнений ${\mathcal E}$ алгоритм унификации ${\mathfrak A}$:
 - 1. Завершает работу на \mathcal{E} (завершаемость)
 - По завершении алгоритмом выдаётся подстановка или сообщение СТОП (успешность)
 - 3. Если выдана подстановка θ , то $\theta \in \mathrm{HOY}(\mathcal{E})$ (корректность)
 - 4. Если выдано сообщение СТОП, то система $\mathcal E$ неунифицируема (полнота)
- 40. (272) Следствие. Для любых атомов A и B логики предикатов верно: $Y(A,B) \neq \emptyset \Leftrightarrow \mathrm{HOY}(A,B) \neq \emptyset.$
- 41. (284) Монотонность следования в ЛП. Для любых множеств предложений Γ, Δ и любого предложения φ верно

$$\Gamma \models \varphi \implies \Gamma \cup \Delta \models \varphi$$

42. (285) Монотонность " \vee " относительно следования в ЛП. Для любого множества предложений Γ и любых предложений $\varphi(\tilde{x}^n), \psi(\tilde{x}^n)$ верно

$$\Gamma \models \forall \tilde{x}^n \varphi \implies \Gamma \models \forall \tilde{x}^n (\varphi \lor \psi)$$

43. (286) Транзитивность следования в ЛП. Для любого множества предложений Γ и любых предложений $\psi_1,\ldots,\psi_n,\varphi$ верно

$$\begin{cases} \Gamma \models \psi_1 \\ \dots \\ \Gamma \models \psi_n \\ \psi_1, \dots, \psi_n \models \varphi \end{cases} \implies \Gamma \models \varphi$$

44. (292) Правило резолюции.

$$\frac{D_1 \vee L_1, D_2 \vee \neg L_2}{(D_1 \vee D_2)\theta}$$

- , где D_1,D_2 дизъюнкты, L_1,L_2 положительные литеры, $\theta\in \mathrm{HOY}(L_1,L_2)$. $(D_1\vee D_2)\theta$ называется резольвентой дизъюнктов $D_1\vee L_1,D_2\vee \neg L_2$.
- 45. (297) Лемма о корректности правила резолюции. Если D резольвента дизъюнктов D_1, D_2 , то $D_1, D_2 \models D$.

46. (299) Правило склейки.

$$\frac{D\vee L_1\vee L_2}{(D\vee L_1)\theta}$$

- , где D дизъюнкт, L_1, L_2 литеры, $heta \in \mathrm{HOY}(L_1, L_2)$.
- 47. (300) Лемма о корректности правила склейки. Если D склейка дизъюнкта D_1 , то $D_1 \models D$.
- 48. (306) Теорема о корректности резолютивного вывода. Если из системы дизъюнктов S резолютивно выводим пустой дизъюнкт \square , то система S невыполнима.
- 49. (316) Эрбрановские интерпретации это интерпретация $\langle \mathcal{H}_{\sigma}, \overline{Const}_{\mathcal{H}}, \overline{Func}_{\mathcal{H}}, \overline{Pred} \rangle$, где:
 - \mathcal{H}_{σ} эрбрановский универсум: это множество всех основных термов сигнатуры
 - ullet σ , если $Const
 eq \emptyset$
 - ullet $\langle \{c_{\mathcal{H}}, Func, Pred\}
 angle$, если $Const = \emptyset$, где $c_{\mathcal{H}}$ эрбрановская константа
 - ullet $\overline{Const}_{\mathcal{H}}(c)=c$ для любой константы c из Const
 - ullet $\overline{Func}_{\mathcal{H}}(f)(t_1,\ldots,t_n)=f(t_1,\ldots,t_n)$ для любых $f^{(n)}\in Func$ и $t_1,\ldots,t_n\in\mathcal{H}_{\sigma}$
 - ullet произвольная оценка предикатных символов
- 50. (317) Эрбрановский базис $(B_{\mathcal{H}})$ это множество всех атомов, построенных над термами \mathcal{H} -универсума. \mathcal{H} -интерпретация \mathcal{I} всегда и однозначно определяется тем, какие атомы из $B_{\mathcal{H}}$ в ней истинны и какие нет, то есть множеством $B^{\mathcal{I}} = \{A \mid A \in B_{\mathcal{H}}, \mathcal{I} \models A\}$.
- 51. (318) Теорема об эрбрановских интерпретациях. Система дизъюнктов выполнима тогда и только тогда, когда она имеет эрбрановскую модель.
- 52. (325) Теорема Эрбрана. Система дизъюнктов невыполнима ⇔ существует конечное невыполнимое множество основных примеров дизъюнктов этой системы.
- 53. (328) Лемма об основных дизъюнктах. Из любой конечной невыполнимой системы основных дизъюнктов резолютивно выводим пустой дизъюнкт.
- 54. (333) Лемма о подъёме для правила резолюции. Пусть D_1, D_2 дизъюнкты, и $\mathrm{Var}_{D_1} \cap \mathrm{Var}_{D_2} = \emptyset.\ D_1', D_2'$ основные примеры дизъюнктов D_1, D_2 соответственно. D' резольвента D_1', D_2' . Тогда существует резольвента D дизъюнктов D_1, D_2 , примером которой является D'.
- 55. (342) Лемма о подъеме для правила склейки. Пусть D_1, D_1' дизъюнкт и его основной пример. D' склейка дизъюнкта D_1' . Тогда существует склейка D дизъюнкта D_1 , примером которой является D'.
- 56. (343) Теорема о полноте резолютивного вывода. Из любой невыполнимой системы дизъюнктов резолютивно выводим пустой дизъюнкт.
- 57. (354) Теорема о полноте семантической резолюции. \mathcal{I} -резолюция полна для любой интерпретации \mathcal{I} . Иными словами, для любой невыполнимой системы дизъюнктов S и любой интерпретации \mathcal{I} существует \mathcal{I} -резолютивный вывод \square из S.
- 58. (357) Теорема о неполноте входной резолюции. Входная резолюция неполна.
- 59. (368) Хорновские дизъюнкты. D-правилом будем называть дизъюнкт, содержащий ровно одну положительную литеру, то есть имеющий вид $\neg A_1 \lor \ldots \neg A_n \lor B$.
 - D-запросом будем называть дизъюнкт, не содержащий ни одной положительной литеры (в

том числе \square), то есть имеющий вид $\neg A_1 \lor \dots \lnot A_k$.

Хорновскими дизъюнктами называются D-правила и D-запросы.

Утверждение. $\neg A_1 \lor \ldots \lnot A_n \lor B \sim A_1 \& \ldots \& A_n \to B$.

Утверждение. $\neg A_1 \lor \ldots \neg A_n \sim \neg (A_1 \& \ldots \& A_n)$.

60. (373) Теорема о входной резолюции как средстве вычисления. Пусть

S - система D-правил,

 Q_1 - D-запрос,

 $Q_1,R_1,Q_2,R_2,\dots,Q_k,R_k,\square$, $k\geq 0$ - успешный <u>входной</u> резолютивный вывод из $S\cup\{Q_1\}$,

 $\theta_1, \dots, \theta_k$ - наиболее общие унификаторы, согласно которым в выводе строятся резольвенты Q_2, \dots, Q_k, \square соответственно.

Тогда
$$S\models ((\neg Q_1)\theta_1\dots\theta_k)^{\forall}$$
. Прим.: $\varphi^{\forall}=\forall ilde{x}^n$, где $\{x_1,\dots,x_n\}=\mathrm{Var}_{\varphi}$.

61. (386-389) Хорновские логические программы (ХЛП). Синтаксис

ХЛП сигнатуры σ логики предикатов - это конечная последовательность программных утверждений, каждое из которых представляет собой факт или правило.

Факт имеет вид A; , где A - атом логики предикатов.

Правило имеет вид $A \leftarrow B_1, \dots, B_k$; , где $k \geq 1$, A - заголовок: атом логики предикатов, B_1, \dots, B_k — тело: последовательность атомов логики предикатов, разделённых запятой. Запрос к ХЛП (оно же целевое утверждение, или цель) имеет вид C_1, \dots, C_k , где C_2, \dots, C_k где C_3, \dots, C_k где C_4, \dots, C_k где

62. (410) SLD-резольвента.

Пусть

- $\mathcal{Q}=?C_1,\ldots,C_{i-1},C_i,C_{i+1},\ldots,C_m$ запрос
- ullet $\mathcal{R} = A \leftarrow B_1, \dots, B_k$ правило
- $\mathcal{R}'=\mathcal{R}\eta$ вариант правила \mathcal{R} для переименования η , не содержащий ни одной переменной из \mathcal{Q}
- $\theta \in \mathrm{HOY}(C_i, A\eta)$ Тогда запрос $\mathcal{Q}' = (?C_1, \ldots, C_{i-1}, B_1\eta, \ldots, B_k\eta, C_{i+1}, \ldots, C_m)$ называется SLD-резольвентой запроса \mathcal{Q} и правила \mathcal{R} для подцели C_i и унификатора θ .
- 63. (421) Лемма о соответствии вычислений и входных выводов. Для любого конечного SLD-резолютивного вычисления

$$\mathcal{Q}_1 \overset{\mathcal{R}_1, k_1, heta_1}{\longrightarrow} \mathcal{Q}_2 \overset{\mathcal{R}_2, k_2, heta_2}{\longrightarrow} \cdots \overset{\mathcal{R}_{n-1}, k_{n-1}, heta_{n-1}}{\longrightarrow} \mathcal{Q}_n$$

программы \mathcal{P} последовательность дизъюнктов $\neg \Phi_{\mathcal{Q}_1}, \Phi_{\mathcal{R}_1}, \dots, \Phi_{\mathcal{R}_{n-1}}, \neg \Phi_{\mathcal{Q}_n}$ является входным резолютивным выводом из $S_{\mathcal{P}} \cup \{ \neg \Phi_{\mathcal{Q}_1} \}$ в котором для вычисления резольвент $\mathcal{Q}_2, \dots, \mathcal{Q}_n$ применяются соответственно унификаторы $\theta_1, \dots, \theta_{n-1}$.

- 64. (423) Теорема о корректности операционной семантики ХЛП. Для любой ХЛП \mathcal{P} и любого запроса \mathcal{Q} верно следующее: любой SLD-вычислимый ответ на \mathcal{Q} к \mathcal{P} является правильным ответом на \mathcal{Q} к \mathcal{P} .
- 65. (429) Лемма об основных вычислениях. Для любой ХЛП \mathcal{P} и любого основного запроса \mathcal{Q} , такого что $S_{\mathcal{P}} \models \Phi_{\mathcal{Q}}$, существует успешное SLD-резолютивное вычисление, порождённое

- запросом \mathcal{Q} к $[\mathcal{P}]$. Прим.: $[\mathcal{P}]$ обозначим бесконечную ХЛП, состоящую из всех основных примеров всех правил ХЛП \mathcal{P} в произвольном порядке.
- 66. (434) Лемма о подъёме вычисления. Для любых ХЛП \mathcal{P} , ответа к ней θ и запроса \mathcal{Q} , таких что $\mathcal{Q}\theta$ основной запрос, верно: если для $[\mathcal{P}]$ существует успешное SLD-резолютивное вычисление, порождённое запросом $\mathcal{Q}\theta$, то для \mathcal{P} существует успешное SLD-резолютивное вычисление, порождённое запросом \mathcal{Q} , результат которого это обобщение подстановки θ .
- 67. (436) Теорема о полноте операционной семантики ХЛП. Для любой ХЛП $\mathcal P$ и запроса $\mathcal Q$ любой правильный ответ на запрос $\mathcal Q$ к $\mathcal P$ является частным случаем хотя бы одного SLD-вычислимого ответа на запрос $\mathcal Q$ к $\mathcal P$.
- 68. (445) Переключательная лемма.
- 69. (449) Теорема о сильной полноте операционной семантики ХЛП. Для любого правила выбора подцели \Re и любого правильного ответа θ существует \Re -вычислимый ответ, являющийся обобщением θ .
- 70. (480-483) Машина Тьюринга. Синтаксис. Семантика Алфавит это непустое конечное множество символов. Машина Тьюринга это система $(\mathfrak{A},\Lambda,\mathcal{Q},q_0,q_f,\pi)$.
 - α алфавит ленты
 - $\Lambda \in \mathfrak{A}$ пустой символ
 - Q алфавит состояний
 - $q_0,q_f\in\mathcal{Q}$ начальное и конечное состояние
 - $\pi: (\mathcal{Q}\setminus\{q_f\}) imes \mathfrak{A} o \mathfrak{A} imes \{L,R\} imes \mathcal{Q}$. Пример: команда состояния q_0 заменяющая a на b, сдвиг влево и переход в состояние q_1 $(q_0,a,b,L,q_1)\Leftrightarrow \pi(q_0,a)=(b,L,q_1)$. Конфигурация машины Тьюринга это набор (α,q,β) , где $\alpha,\beta\in\mathfrak{A}^+$ и $q\in\mathcal{Q}$.
 - $ightarrow_C$ преобразование конфигурации командой C.
 - $ightarrow_M$ объединение отношений $ightarrow_C$ по всем командам C машины Тьюринга M.
- 71. (496) Теорема о моделировании машин Тьюринга хорновскими ЛП. Для любых МТ M и конфигурации σ последовательность запросов $?p(\tau_{\sigma}),?p(t_1),?p(t_2),\dots$ является вычислением ХЛП \mathcal{P}_M тогда и только тогда, когда существуют конфигурации σ_1,σ_2,\dots , такие что $t_1=\tau_{\sigma_1},t_2=\tau_{\sigma_2},\dots$ и $\sigma \to_M \sigma_1 \to_M \sigma_2 \to_M \dots$
- 72. (496) Вычисление ХЛП назовём непродолжаемым, если оно успешное, тупиковое или бесконечное.
- 73. (496) Следствие из тео. о моделировании МТ ХЛП. Для любой МТ M и любой её конфигурации σ существует ровно одно непродолжаемое вычисление программы \mathcal{P}_M на $?p(\tau_\sigma)$.
- 74. (498) \mathcal{P}_M^1 ХЛП получающаяся из \mathcal{P}_M добавлением факта $p(X.\,q_f.\,Y.\,nil)$;.
- 75. (498) Следствие. Для любой МТ $M=(\mathfrak{A},\Lambda,\mathcal{Q},q_0,q_f,\pi)$ и любого ленточного слова w верно: вычисление M на w конечно $\Leftrightarrow ?p(\tau_{(\Lambda,q_0,w\Lambda)}) \to_{\mathcal{P}^1}^* \square$.
- 76. (498) Следствие. Для любой МТ $M=(\mathfrak{A},\Lambda,\mathcal{Q},q_0,q_f,\pi)$ и любого ленточного слова w верно: вычисление M на w конечно $\Leftrightarrow ?p(\tau_{(\Lambda,q_0,w\Lambda)}) \to_{\mathcal{P}^1}^* \square$.
- 77. (499) \mathcal{P}_{M}^{2} ХЛП получающаяся из \mathcal{P}_{M}^{1} добавлением в предикат $p(_,Z)$ второго аргумента, который нигде не изменятся, кроме последнего правила: $p(X,q_{f},Y,nil,X,q_{f},Y,nil)$;.

- 78. (505) Массовая задача $\mathfrak{T}: \mathfrak{I} \to \mathfrak{D}$ это отображение множества всевозможных входных данных \mathfrak{I} в множество всевозможных выходных данных \mathfrak{D} .
- 79. (507) Алгоритм $\mathcal A$ решает задачу $\mathfrak T: \mathfrak I \to \mathfrak D$, если $\mathcal A$ и $\mathfrak T$ определены для одинаковых множеств входных и выходных данных, и $\mathcal A$ завершается на любом входе и всегда вычисляет правильный ответ к задаче $\mathfrak T$.
- 80. (507) Массовая задача (алгоритмически) разрешима, если существует алгоритм, решающий эту задачу, и неразрешима, если такого алгоритма не существует.
- 81. (508) Задача распознавания это массовая задача с множеством ответов {да, нет}.
- 82. (508) Задача $\mathfrak{T}_1:\mathfrak{I}_1\to\{1,0\}$ m-сводится (или m-сводима) к задаче $\mathfrak{T}_2:\mathfrak{I}_2\to\{1,0\}$, если 1) существует алгоритм \mathcal{A} , такой что $\mathcal{A}:\mathfrak{I}_1\to\mathfrak{I}_2$ всюду определённое отображение и 2) для любого входа і задачи \mathfrak{T}_1 верно $\mathfrak{T}_1(\mathfrak{i})=\mathfrak{T}_2(\mathcal{A}(\mathfrak{i}))$.
- 83. (509) Теорема об m-сводимости. Если задача \mathfrak{T}_1 m-сводится к разрешимой задаче \mathfrak{T}_2 , то задача \mathfrak{T}_1 также разрешима.

Следствие. Если неразрешимая задача \mathfrak{T}_1 m-сводится к задаче \mathfrak{T}_2 , то задача \mathfrak{T}_2 также неразрешима.

84. (513) Проблема останова МТ (Halt).

Входы: МТ M, ленточное слово w

 $Halt(M,w)=\mathbb{t}\Leftrightarrow$ вычисление M на w конечно

85. (513) Проблема распознавания (LogProg)

Входы: конечная сигнатура σ логики предикатов, ХЛП $\mathcal P$ и основной запрос $\mathcal Q$ этой сигнатуры

$$LogProg(\sigma, \mathcal{P}, \mathcal{Q}) = \mathfrak{t} \Leftrightarrow \mathcal{Q} \rightarrow_{\mathcal{P}}^* \square.$$

86. (515) Проблема общезначимости формул ЛП (Valid)

Вход: конечная сигнатура σ и формула ЛП φ этой сигнатуры

$$Valid(\sigma, \varphi) = \mathbb{t} \Leftrightarrow \models \varphi$$

- 87. (513-517) Утверждения о проблемах Halt, LogProg и Valid. Теорема Чёрча.
 - 1. Утверждение. Известно, что проблема Halt алгоритмически неразрешима.
 - 2. Утверждение. Проблема Halt m-сводима к проблеме LogProg.
 - 3. Следствие. Проблема LogProg алгоритмически неразрешима.
 - 4. Утверждение. Проблема LogProg m-сводима к проблеме Valid.
 - 5. Теорема Чёрча. Проблема общезначимости формул логики предикатов (Valid) алгоритмически неразрешима.

88.

89. (588) Модальные логики. Семантика Крипке

Модель Крипке над переменными Var - это система (W,\mapsto,L) , где

- $1. \ W$ непустое множество миров
- $2. \mapsto \subseteq W imes W$ отношение переходов между мирами (w' называется w-альтернативой для w, если $w\mapsto w'$)

$3.\ L:W o 2^{\mathrm{Var}}$ - оценка переменных для каждого мира ($x\in L(w)$ - переменная x истинна
в мире w)
Шкала Крипке - это пара (W,\mapsto) .
Пусть ${\mathcal F}$ - шкала Крипке, ${\mathcal I}$ - модель Крипке, $arphi, \psi$ - формулы модальной логики. Тогда
4 . Формула $arphi$ истинна в модели $\mathcal I$ ($\mathcal I \models arphi$), если для любого мира w модели $\mathcal I$ верно
$\mathcal{I},w\models\varphi.$
5 . Формула $arphi$ истинна на шкале \mathcal{F} ($\mathcal{F} \models arphi$), если для любой модели Крипке \mathcal{J} ,
основанной на ${\mathcal F}$, верно ${\mathcal J} \models \varphi.$
6. Формула $arphi$ общезначима ($\models arphi$), если для любой шкалы $\mathcal F$ верно $\mathcal F \models arphi$.
7. Формулы $arphi$ и ψ равносильны ($arphi \sim \psi$), если $\models arphi \leftrightarrow \psi$.
90 . (597-598) Законы модальных логик. Для любых формул $arphi, \psi$ верно
1. $\Box \varphi \sim \neg \Diamond \neg \varphi$
2. Если $\models \varphi$, то $\models \Box \varphi$
$3. \models \Box(\varphi o \psi) o (\Box \varphi o \Box \psi)$
91. (600) Эпистемическая логика (логика знаний, "я знаю"/"я допускаю")
1. $\Box arphi ightarrow arphi$ (мои знания верны, закон адекватности знания)
$2.\ \Boxarphi ightarrow\Boxarphi$ (мне известно, что именно я знаю, закон позитивной интроспекции)
$3. \ eg \Box arphi o \Box \neg \Box arphi$ (мне известно, что именно я не знаю, закон негативной интроспекции)
92. (602-604) Следствия законов эпистемической логики. Для любой шкалы Крипке
$\mathcal{F} = (W, \mapsto)$ и любой формулы $arphi$ верно:
1. $\mathcal{F}\models\Boxarphi ightarrowarphi$ ф отношение \mapsto рефлексивно
$2.~\mathcal{F}\models\Boxarphi ightarrow\Boxarphi\Leftrightarrow$ отношение \mapsto транзитивно
3. $\mathcal{F}\models eg\Box arphi ightarrow \Box eg\Box arphi \Leftrightarrow$ отношение \mapsto симметрично
93. (605) Следствие. Модель Крипке идеального познающего субъекта - это модель,
отношение переходов которой является отношением эквивалентности.
94. (609) Темпоральная логика (логика времени, "всегда/иногда").
LTL - логика линейного времени.
1. Время дискретно линейно течёт вперёд
2. Формула - это свойство линейного развития событий
CTL - логика деревьев вычислений
3. Время - это частично упорядоченное множество, которым описываются все варианты
развития событий
4. Формула - это высказывание о возможности и невозможности заданного развития
событий с учётом всех вариантов
95. (612) Логика линейного времени (LTL). В LTL модальности □ и ◊ обозначаются G (от
"Globally") и F (от "in Future") соответственно.
96. (616) Логика деревьев вычислений (СТL). Модальности в СТL.
1. AG (от "for All paths G") (это □ модальность).
2. EF (от "Exists path such that F") (это ◊ модальность)

- 3. **EG** (от "Exists path such that G"). $\mathcal{I}, v \models \mathbf{EG}\varphi \Leftrightarrow$ существует ветвь дерева, исходящая из v и такая что для каждой вершины w этой ветви верно $\mathcal{I}, w \models \varphi$.
- 4. **AF** (от "for All paths F"). $\mathcal{I}, v \models \mathbf{AF}\varphi \Leftrightarrow$ для каждой ветви дерева, исходящей из v существует вершина w, такая что $\mathcal{I}, w \models \varphi$.
- 97. (623) Интуиционистская логика. Семантика Колмогорова-Брауэра-Гейтинга. Интуиционистская шкала Крипке это пара (W, \preceq) , где \preceq отношение нестрогого частичного порядка: оно
 - 1. рефлексивно,
 - 2. транзитивно,
 - 3. антисимметрично ($\forall w_1,w_2:w_1\preceq w_2,w_2\preceq w_1\implies w_1=w_2$) Интуиционистская интерпретация - это модель Крипке (W,\preceq,L) , для которой
 - 4. (W, \preceq) интуиционистская шкала Крипке,
 - 5. оценка L монотонна: для любых миров w_1,w_2 и любой переменной x верно $x\in L(w_1),w_1\preceq w_2\implies x\in L(w_2).$
- 98. (630) Интуиционистское отношение выполнимости.

$$\mathcal{I},w\models_{\mathfrak{i}}x,x\in\mathrm{Var}\Leftrightarrow x\in L(w)$$

$$\mathcal{I},w\models_{\mathbf{i}}\varphi\,\&\,\psi\Leftrightarrow\mathcal{I},w\models_{\mathbf{i}}\varphi\;\mathsf{M}\;\mathcal{I},w\models_{\mathbf{i}}\psi$$

$$\mathcal{I},w\models_{\mathfrak{i}}arphiee\psi$$
 $\psi\Leftrightarrow\mathcal{I},w\models_{\mathfrak{i}}arphi$ или $\mathcal{I},w\models_{\mathfrak{i}}\psi$

$$\mathcal{I},w\models_{\mathrm{i}}\varphi\,\&\,\psi\Leftrightarrow\mathcal{I},w\models_{\mathrm{i}}\varphi$$
 и $\mathcal{I},w\models_{\mathrm{i}}\psi$

$$\mathcal{I},w\models_{\mathfrak{i}}
egarphi\Leftrightarrow orall w':w\preceq w'$$
 верно $\mathcal{I},w'\not\models_{\mathfrak{i}}arphi$

$$\mathcal{I},w\models_{\mathfrak{i}}arphi o\psi\Leftrightarrow orall w':w\preceq w'$$
 и $\mathcal{I},w'\models_{\mathfrak{i}}arphi$ верно $\mathcal{I},w'\models_{\mathfrak{i}}\psi$

Формула φ интуиционистски общезначима ($\models_{\mathfrak{i}} \varphi$), если для любой интуиционистской интерпретации $\mathcal I$ и любого её мира w верно $\mathcal I, w \models_{\mathfrak{i}} \varphi$.

99. (631) Свойства интуиционистской логики.

Для любых переменных x,y верно:

1.
$$\not\models_i x \lor \neg x$$

2.
$$\not\models_i \neg \neg x \rightarrow x$$

3.
$$\not\models_i \neg (x \& y) \rightarrow (\neg x \lor \neg y)$$

$$4. \not\models_{\mathsf{i}} \neg (x \lor y) \to (\neg x \& \neg y)$$

$$5. \models_{i} x \rightarrow \neg \neg x$$

$$6. \models_{i} \neg \neg \neg x \rightarrow \neg x$$

7.
$$\models_{\mathfrak{i}} (\neg x \vee \neg y) \rightarrow \neg (x \& y)$$

$$8. \models_i \neg x \lor \neg \neg x$$

- 100. (634) Утверждения о формулах интуиционистской логики.
 - 1. Для любых формулы φ , интуиционистской интерпретации $I=(W,\preceq,L)$ и миров w_1,w_2 верно $\mathcal{I},w_1\models_{\mathfrak{i}}\varphi$ и $w_1\preceq w_2\implies \mathcal{I},w_2\models_{\mathfrak{i}}\varphi$.
 - 2. Для любой формулы arphi, такой что $\models_{\mathfrak{i}} arphi$, верно и $\models arphi$ в логике высказываний.
 - 3. Для любых формул φ и ψ верно $\models_{\mathfrak{i}} \varphi \lor \psi \implies \models_{\mathfrak{i}} \varphi$ или $\models_{\mathfrak{i}} \psi.$
- 101. (652) Задача верификации программ.

Тройка Хоара - это запись вида $\{ \varphi \} \pi \{ \psi \}$. φ - формула логики предикатов, называемая

предусловием, π - программа, ψ - формула логики предикатов, называемая постусловием. Триплет $\{\varphi\}\pi\{\psi\}$ истинен в интерпретации \mathcal{I} ($\mathcal{I}\models\{\varphi\}\pi\{\psi\}$), если для любых состояний данных σ,σ' верно следующее: если $\mathcal{I}\models\varphi\sigma$ и значение $\sigma'=\mathcal{I}[\pi](\sigma)$ определено, то $\mathcal{I}\models\psi\sigma'$

Программа π частично корректна в интерпретации $\mathcal I$ относительно предусловия φ и постусловия ψ , если $\mathcal I \models \{\varphi\}\pi\{\psi\}$.

- 102. (654) Логика Хоара. Лемма о корректности правил вывода Хоара. Для любой интерпретации $\mathcal I$ и любого из правил $R_\emptyset, R_{:=}, R_{if}, R_{while}, R_{seq}, R_{inf}$ верно следующее: если все под чертой истинно в интерпретации $\mathcal I$, то все над чертой тоже истинно в интерпретации $\mathcal I$.
- 103. (658) Теорема о корректности логики Хоара. Если существует успешный вывод триплета $\{\varphi\}\pi\{\psi\}$ в интерпретации \mathcal{I} , то $\mathcal{I}\models\{\varphi\}\pi\{\psi\}$.
- 104. (671) Слабейшим предусловием для программы π и постусловия ψ в интерпретации $\mathcal I$ называется формула $wpr(\pi,\psi,\mathcal I)$, такая что
 - 1. $\mathcal{I} \models \{wpr(\pi,\psi,\mathcal{I})\}\pi\psi$ и
 - 2. для любой формулы φ , такой что $\mathcal{I}\models\{\varphi\}\pi\{\psi\}$, верно соотношение $\mathcal{I}\models\varphi\to wpr(\pi,\psi,\mathcal{I}).$
- 105. (671) Теорема. $\mathcal{I}\models\{arphi\}\pi\{\psi\}\Leftrightarrow\mathcal{I}\models\{wpr(\pi,\psi,\mathcal{I})\}\pi\psi$ и $\mathcal{I}\modelsarphi o wpr(\pi,\psi,\mathcal{I}).$
- 106. (672) Теорема о слабейшем предусловии.
 - 1. $wpr(\emptyset, \psi, \mathcal{I}) = \psi$
 - 2. $wpr(x:=t; , \psi, \mathcal{I}) = \psi\{x/t\}$, если подстановка $\{x/t\}$ правильна для ψ
 - 3. $wpt(\text{if C then } \pi_1 \text{ else } \pi_2 \text{ fi}, \psi, \mathcal{I}) = C \& wpr(\pi_1, \psi, \mathcal{I}) \vee \neg C \& wpr(\pi_2, \psi, \mathcal{I})$
 - 4. $wpr(\pi_1\pi_2, \psi, \mathcal{I}) = wpr(\pi_1, wpr(\pi_2, \psi, \mathcal{I}), \mathcal{I})$
- 107. (690) Система переходов программы.

Состояние управления: то, какую часть программы осталось выполнить

Состояние данных: то, как устроены данные, преобразуемые программой на каждом шаге (например, оценки переменных или запросы)

Состояние вычисления, включающее в себя состояние данных и состояние управления Отношение \to_π шага вычисления программы π

- 108. (707) CTL*: синтаксис и семантика
 - 1. Кванторы пути:
 - 1.~Aarphi для любого бесконечного пути, исходящего из текущего состояния, верно arphi
 - 2. $E \varphi$ «существует бесконечный путь, исходящий из текущего состояния и такой что для него верно φ
 - 2. Темпоральные кванторы:
 - 1. Farphi когда-нибудь, рано или поздно, станет верно arphi
 - $2.~G\varphi$ всегда будет верно φ
 - $3. X\varphi$ в следующем состоянии будет верно φ (ne**X**t step)
 - 4. $\varphi U \psi$ когда-нибудь станет верно ψ , а пока оно не стало верным, обязательно верно φ (**U**ntil)

- 109. (709-711) СТL*. Отношения выполнимости формул для СП $M=(S,S_0,\mapsto,L)$, состояния s и бесконечного пути π задаются следующими правилами:
 - 1. $M,s\models Aarphi\Leftrightarrow$ для любого бесконечного пути π в M, исходящего из s, верно $M,\pi\models arphi.$
 - 2. $M,s \models E\varphi \Leftrightarrow$ существует бесконечный путь π в M, исходящий из s и такой что $M,\pi \models \varphi.$
 - $3.\ M,s\models Farphi\Leftrightarrow$ существует номер $k,k\geq 1$, такой что $M,\pi^k\models arphi$
 - 4. $M,s\models Garphi\Leftrightarrow$ для любого номера $k,k\geq 1$ верно $M,\pi^k\models arphi$
 - 5. $M, s \models X\varphi \Leftrightarrow M, \pi^2 \models \varphi$
 - 6. $M,s \models \varphi U \psi \Leftrightarrow$ существует номер $k,k \geq 1$, такой что $M,\pi^k \models \psi$ и для любого номера m, такого что $1 \leq m < k$, верно $M,\pi^m \models \varphi$.
 - , где π^k суффикс пути π , начинающийся с k-го состояния